Amphidinolides B6 and B7, Cytotoxic Macrolides from a Symbiotic Dinoflagellate *Amphidinium* Species

Keiko Oguchi,[†] Masashi Tsuda,^{*,‡} Rie Iwamoto,[†] Yumiko Okamoto,[†] Taeko Endo,[†] Jun'ichi Kobayashi,[†] Tomoko Ozawa,[§] and Atsunori Masuda[§]

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, Center for Advanced Marine Core Research, Kochi University, Kochi 783-8502, Japan, and Marine Farm, Yanmar Co. Ltd., Oita 873-0421, Japan

Received June 26, 2007

Two 26-membered macrolides, amphidinolides B6 (2) and B7 (1), have been isolated from a marine symbiotic dinoflagellate *Amphidinium* sp., and the structures were elucidated on the basis of detailed analyses of 2D NMR data. The relative and absolute configurations for 1 and 2 were assigned by comparison of NMR data and CD data with those of known amphidinolides.

The amphidinolides are a series of unique cytotoxic macrolides isolated from the dinoflagellates Amphidinium sp., which were separated from marine acoel flatworms of the genus Amphiscolops.¹ Amphidinolides $H^{2,3}$ (3) and B^{4-6} which were initially isolated from marine dinoflagellates Amphidinium spp. (strains Y-25 and Y-5, respectively), are 26-membered macrolides possessing unique structures such as an allyl epoxide and an S-cis-diene. A 27membered macrolide, amphidinolide G,² is the regioisomeric form of **3** at C-26, while amphidinolide L^7 corresponds to a 20-dihydro-21-dehydro derivative of amphidinolide G. Eight amphidinolide H congeners, amphidinolides H2-H5,8 and B2-B56,9 and three amphidinolide G congeneres, amphidinolides G2-G4,8 have been isolated so far. Among these macrolides, amphidinolides H (3) and B exhibit potent cytotoxicity (IC₅₀ 0.0045-0.00014 µg/mL) against cultured tumor cells in vitro. In SAR studies of 3, it was revealed that the presence of an allyl epoxide, an S-cis-diene moiety, and a ketone at C-20 was important for the cytotoxicity.8 Recently, it was revealed that amphidinolide H binds to actin covalently.¹⁰

During our search for *Amphidinium* strains that produce amphidinolide B or H in significant quantity,^{8,9} we have found a new symbiotic *Amphidinium* strain (named HYA002), which produces large amounts of amphidinolide H-related macrolides (>0.1% of dry cell mass). Detailed investigation of the HYA002 extract resulted in the isolation of two new macrolides, amphidinolides B6 (2) and B7 (1). Herein we describe the isolation and structure elucidation of 1 and 2.

The dinoflagellate *Amphidinium* sp. (strain HYA002) was isolated from an acoel flatworm (*Amphiscolops* sp.) collected off Sunabe, Okinawa, and was brought into large-scale unialgal culture at 23 °C for 2 weeks in a 3% Provasoli's enriched seawater (PES) medium (enriched with 3 mM NaHCO₃). The algal cells (52.3 g, dry weight) obtained from 540 L of culture were extracted with MeOH–toluene (3:1), and the extracts were partitioned between toluene and 1 M aqueous NaCl. The toluene-soluble materials were subjected to SiO₂ gel and C₁₈ columns followed by C₁₈ HPLC to afford amphidinolides B6 (**2**, 0.003%) and B7 (**1**, 0.003%), together with known related macrolides, amphidinolides H^{2.3} (**3**, 0.03%) and H4⁸ (**4**, 0.11%).

Amphidinolide B7 [1, $[\alpha]_D^{17}$ -22 (*c* 0.2, CHCl₃)] was assigned the molecular formula C₃₂H₅₂O₇, corresponding to the deoxy form of **4**, from HRESIMS data [*m*/z 571.3618 (M + Na)⁺, Δ +0.7 mmu]. Although the ¹³C NMR (Table 1) spectrum of **1** was similar

Table 1. ¹³C NMR Spectroscopic Data (δ_C ppm, mult.) for Amphidinolides B7 (1), B6 (2), H4 (4), and H5 (5) (CDCl₃, 150 MHz)

position	1		2		4		5	5
1	167.8	С	177.4	С	168.7	С	168.6	С
2	127.8	С	48.2	CH	127.4	С	127.2	С
3	141.8	CH	71.2	CH	143.1	CH	143.6	CH
4	27.9	CH_2	33.5	CH_2	28.1	CH_2	27.1	CH_2
5	25.3	CH_2	24.9	CH_2	25.2	CH_2	25.0	CH_2
6	28.0	CH_2	25.1	CH_2	27.9	CH_2	27.9	CH_2
7	32.1	CH_2	32.2	CH_2	32.1	CH_2	31.6	CH_2
8	60.0	CH	60.0	CH	59.9	CH	59.1	CH
9	58.3	CH	58.6	CH	58.2	CH	58.9	CH
10	40.5	CH_2	40.6	CH_2	40.5	CH_2	40.1	CH_2
11	29.0	CH	29.3	CH	29.0	CH	28.8	CH
12	47.1	CH_2	47.0	CH_2	47.2	CH_2	47.0	CH_2
13	144.0	С	144.1	С	144.1	С	144.0	С
14	126.2	CH	126.3	CH	126.3	CH	126.0	CH
15	141.5	С	141.5	С	141.4	С	141.0	С
16	41.1	CH	41.2	CH	41.1	CH	41.1	CH
17	40.3	CH_2	40.7	CH_2	40.5	CH_2	41.0	CH_2
18	67.0	CH	67.2	CH	67.5	CH	65.6	CH
19	44.7	CH_2	44.6	CH_2	44.9	CH_2	44.0	CH_2
20	210.8	С	209.9	С	210.8	С	210.2	С
21	77.4	CH	77.9	CH	77.5	CH	78.8	CH
22	75.1	CH	74.7	CH	75.0	CH	76.3	CH
23	32.5	CH	32.4	CH	32.4	CH	32.7	CH
24	40.0	CH_2	40.2	CH_2	34.2	CH_2	34.1	CH_2
25	68.0	CH	67.7	CH	73.4	CH	73.2	CH
26	21.2	CH ₃	21.2	CH ₃	66.2	CH ₃	66.6	CH ₃
27	12.3	CH_3	14.2	CH ₃	12.3	CH_3	12.3	CH ₃
28	17.6	CH_3	17.9	CH ₃	17.6	CH ₃	17.6	CH ₃
29	114.9	CH_2	114.9	CH_2	114.9	CH ₂	114.9	CH ₂
30	12.6	CH ₃	12.7	CH ₃	12.7	CH ₃	12.5	CH ₃
31	20.3	CH ₃	20.5	CH ₃	20.3	CH ₃	20.5	CH ₃
32	15.7	CH ₃	16.2	CH ₃	15.6	CH_3	15.3	CH ₃

to those of amphidinolides H4⁸ (4) and H5⁸ (5), an additional methyl signal ($\delta_{\rm C}$ 21.2) was observed for 1 in place of the oxymethylene signal at $\delta_{\rm C}$ 66.2 and 66.6 (C-26) for 4 and 5, respectively. The planar structure of 1 was assigned as the 26-deoxy form of 4 or 5 on the basis of ¹H–¹H COSY, TOCSY, HMQC, and HMBC data (Figure 1).

The relative stereochemistry of **1** was deduced by comparison of ¹H and ¹³C chemical shifts and ¹H–¹H coupling constants with those of amphidinolides H4⁸ (**4**) and H5⁸ (**5**) as follows. The ¹³C NMR data (Table 1) for C-1–C-23 and C-27–C-32 portions of **1** were more closely similar to those of **4** rather than those of **5**. Specifically, the chemical shifts for C-17, C-18, C-19, C-20, C-21, and C-22 of **1** were more similar to those of **4** (chemical shift differences for **1** vs **4**; C-17: -0.2, C-18: -0.5, C-19: -0.2,

© 2007 American Chemical Society and American Society of Pharmacognosy Published on Web 10/09/2007

^{*} To whom correspondence should be addressed. Tel: +81-88-864-6720. Fax: +81-88-864-6713. E-mail: mtsuda@kochi-u.ac.jp.

[†] Hokkaido University.

[‡] Kochi University.

[§] Yanmar Co Ltd.

^{10.1021/}np0703085 CCC: \$37.00 © 2007

C-20: 0.0, C-21: -0.1, C-22: +0.1; rmsd 0.1) and different from those of **5** (chemical shift differences for **1** vs **5**; C-17: -0.7, C-18: +1.4, C-19: +0.7, C-20: +0.6, C-21: -1.4, C-22: -1.2; rmsd 0.9). Furthermore, ¹H chemical shifts and coupling constants (Table 2)

Table 2. ¹H NMR Spectroscopic Data ($\delta_{\rm H}$ ppm) for Amphidinolides B7 (1), B6 (2), H4 (4), and H5 (5) (CDCl₃, 600 MHz)

Poblicion	1	2	4	5
2		2.45 (quint, 7.0)		
3	6.88 (brt, 7.0)	3.76 (br t, 7.0)	6.97	6.81
4	2.28	1.51	2.31	2.32
	2.16	1.34	2.18	2.22
5	1.56	1.61	1.59	1.60
	1.43	1.50	1.44	1.54
6	1.60	1.54	1.66	1.60
	1.42	1.32	1.46	1.52
7	1.83	1.88	1.90	1.84
	1.15	1.13	1.15	1.21
8	2.74 (dt, 9.0, 2.4)	2.71 (dt, 9.1, 2.4)	2.75	2.83
9	2.91 (dt, 9.5, 2.4)	2.87 (dt, 9.3, 2.4)	2.90	2.97
10	1.50	1.48	1.55	1.52
	1.13	1.11	1.17	1.00
11	1.61	1.63	1.63	1.52
12	2.13 (dd, 4.0, 13.5)	2.13 (dd, 4.2, 13.3)	2.16	2.16
	1.78	1.79	1.80	1.84
14	5.50 (s)	5.48 (s)	5.52	5.56
16	2.20	2.18 (ddq, 4.5, 10.8, 6.6)	2.21	2.22
17	1.80	1.83	1.81	1.84
	1.42	1.42 (ddd, 4.3, 9.7, 14.0)	1.42	1.42
18	3.97	4.01 (ddt, 1.8, 4.0, 9.7)	3.98	4.03
19	2.73 (dd, 9.0, 15.6)	2.73 (dd, 9.7, 15.7)	2.72	2.89
	2.54 (br d, 15.6)	2.54 (dd, 1.8, 15.7)	2.54	2.56
21	4.43 (br s)	4.46 (br s)	4.44	4.27
22	3.69 (br d, 9.0)	3.69 (br d, 9.4)	3.74	3.57
23	1.93	1.90	1.95	1.92
24	1.82	1.79 (br dd, 11.6, 13.8)	2.01	2.42
	1.24	1.20	1.28	1.17
25	5.06 (dq, 10.8, 6.7)	5.18 (ddq, 1.3, 11.6, 6.7)	5.07	5.15
26	1.26^{b} (d, 6.7)	1.22^{b} (d, 6.7)	3.76	3.76
			3.68	3.72
27	1.80^{b} (br s)	1.12^{b} (d, 7.0)	1.83^{b}	1.83 ^b
28	0.86^{b} (d, 6.5)	0.86^{b} (d, 6.5)	0.88^{b}	0.84^{b}
29	5.00 (s)	5.00 (s)	5.00	4.97
	4.81 (s)	4.82 (s)	4.83	4.81
30	1.73^{b} (br s)	1.74^{b} (br s)	1.75^{b}	1.75^{b}
31	1.05^{b} (d, 6.7)	1.06^{b} (d, 6.6)	1.07^{b}	1.07^{b}
32	1.01 ^b (d, 6.7)	1.06^{b} (d, 6.8)	1.06^{b}	0.97^{b}

 a Figures in parentheses denote J values (Hz). b 3H.

for C-7–C-12 and C-16–C-25 portions of **1** also showed the same trend as those of **4**, while *J*(H-18/H-19a) and *J*(H-18/H-19b) values for **1** (9.0 and 2.0 Hz, respectively) were quite different from those for **5** (2.5 and 10.4 Hz, respectively). Thus, the relative configuration of nine chiral centers, C-8, C-9, C-11, C-16, C-18, C-21, C-22, C-23, and C-25, for **1** was considered to be the same as that for **4**. This was supported by NOESY correlations observed for the C-7–C-26 part of **1** as shown in Figure 2. The CD spectrum [λ_{max} 261 ($\Delta \varepsilon$ +0.1) and 234 nm (-0.18)] for **1** matched those for amphidinolides H (**3**) [λ_{ext} 261 ($\Delta \varepsilon$ +0.1) and 234 nm (-0.15)] and B4⁹ (**6**) [λ_{ext} 262 ($\Delta \varepsilon$ +0.1) and 234 nm (-0.22)]. Therefore, the absolute configuration of amphidinolide B7 (**1**) is proposed to be 8*S*, 9*S*, 11*R*, 16*S*, 18*S*, 21*R*, 22*S*, 23*R*, and 25*S*.

Amphidinolide B6 [2, $[\alpha]_D^{17}$ +29 (*c* 0.01, CHCl₃)] showed a pseudomolecular ion peak at m/z 567 (M + H)⁺ in the ESIMS spectrum, and the molecular formula of C₃₂H₅₄O₈ was assigned on the basis of HRESIMS data [m/z 589.3718 (M + Na)⁺, Δ +0.2 mmu]. The ¹³C NMR data (Table 1) assigned by HMQC and multiplicity-edited HSQC spectra disclosed 32 carbon signals in total: a ketone, an ester carbonyl, two quaternary sp² carbons, an sp² methine, an sp² methylene, 11 sp³ methines including seven oxygenated ones, nine sp³ methylenes, and six methyls. Although the ¹H NMR (Table 2) spectrum of **2** was comparable to that of amphidinolide B7 (**1**), the C-3 sp² methine and the C-27 allylic methyl resonances typical for amphidinolide B- and H-type macrolides were not observed in the ¹H NMR data for **2**, indicating that the trisubstituted double bond at C-2–C-3 was absent from **2**.

Figure 2. NOESY correlations and stereostructure for C-7–C-26 portion of amphidinolide B7 (1). Dotted lines showed anti relations for geminal proton pairs.

Figure 3. Selected 2D NMR correlations for amphidinolide B6 (2).

Detailed analyses of ¹H–¹H COSY and TOCSY spectra disclosed four spin systems, from H-2 to H₂-4 and H₃-27, from H₂-6 to H₂-12 and H₃-28, from H-16 to H₂-19 and H₃-31, and from H-21 to H₃-26 and H₃-32 (Figure 3). Connectivity between C-4 and C-7 through two methylene carbons (C-5 and C-6) was deduced from HSQC-TOCSY correlations for H-3/C-5 and H-8/C-5. The C-7–C-26 portion of **2** including five methyls (C-28, C-29, C-30, C-31, and C-32) was common to that of **1** and was delineated by HMBC correlations as shown in Figure 3. An HMBC correlation from H₃-27 to the ester carbonyl carbon (C-1: δ_C 177.4) indicated that the ester group was attached to the methine carbon at C-2. The relatively deshielded resonance of H-25 (δ_H 5.18) suggested that C-25 was involved in an ester linkage with C-1. Thus, the planar structure of amphidinolide B6 was assigned as **2**.

Comparison of ¹³C and ¹H chemical shifts and ¹H-¹H coupling constants (Tables 1 and 2, respectively) for 2 with those of 1, 4, and 5 suggested that the relative configuration of the nine chiral centers (C-8, C-9, C-11, C-16, C-18, C-21, C-22, C-23, and C-25) in the C-7-C-26 portion of 2 was the same as that of 1 and 4, which was supported by NOESY correlations. Erythro rotation for the C-2–C-3 bond in 2 was elucidated by a relatively large $J_{(H-2,H-3)}$ value (7.2 Hz) and NOESY correlations for H-2/H₂-4, H-3/H₃-27, and H-4a/H₃-27 (Figure 4a). NOESY correlation for H-3/H-25 indicated that H-3 and H-25 were oriented to the same side of the plane across C-3 and C-25, as shown in Figure 4b. Thus, the relative configuration for amphidinolide B6 was assigned as 2. The CD spectrum [λ_{ext} 262 ($\Delta \varepsilon$ +0.1) and 235 nm (-0.18)] of **2** was similar to those of amphidinolides H (3) and B4 (6). Therefore, the absolute configuration of 2 was proposed to be 2S, 3S, 8S, 9S, 11R, 16S, 18S, 21R, 22S, 23R, and 25S.

Figure 4. (a) Rotation for C-2–C-3 bond and (b) streostructure for C-24–C-4 portion of amphidinolide B6 (2).

Amphidinolide B6 (2) is the first oxygenated congener at C-3 in the amphidinolides B- and H-type macrolides, while amphidinolide B7 (1) is a 6,7-dihydro form of amphidinolide B4 (6). Amphidinolides B6 (2) and B7 (1) exhibited cytotoxicity against human B lymphocyte DG-75 cells (IC₅₀: 0.02 and 0.4 μ g/mL, respectively), both of which were considerably weaker than that (IC₅₀: 0.001 μ g/ mL) of amphidinolide H (3). This is considered to be due to the absence of the double bond at C-6 and agrees with previous structure–activity relationship studies.⁸

Experimental Section

General Experimental Procedures. Optical rotations were measured on a JASCO DIP-370 polarimeter. IR spectra were recorded on a JASCO FT/IR-5300 spectrophotometer. ¹H, ¹³C, and 2D NMR spectra were measured on a Bruker AMX-600 or AMX-500 spectrometer using 2.5 mm micro cells for CDCl₃ (Shigemi Co., Ltd.). Positive mode ESIMS spectra were obtained on a JEOL JMS 700-TZ spectrometer (-80 V as a focus voltage) using a sample dissolved in MeOH with a flow rate of 200 μ L/min.

Material. The dinoflagellate Amphidinium sp. (strain HYA002) was separated from the internal cells of the marine acoel flatworm Amphiscolops sp., which was collected off Sunabe beach, Okinawa Island, Japan. The culture was maintained in sterilized seawater medium enriched with 1% PES supplement at 23 °C under an illumination of about 30 μ mol photons μ m⁻² μ s⁻¹ with 16:8 h light:dark cycle. The small subunit rRNA gene (SSU rDNA) was amplified from a single cell using the primer pairs described previously,¹¹ and both the coding and noncoding strands were sequenced using an Applied Biosystems thermal cycler GeneAmp PCR Systems 9700 DNA sequencer. Three repetitions of the amplification reaction of SSU rDNA from a single cell were carried out. The DNA sequence was compared with those of the SSU rDNA in the databases using BLAST SEARCH and the SSU rDNAs of *Amphidinium gibossum*¹² (as *A. belauense*, strain 324, accession No. L13719). A. gibossum was originally described as a symbiont of the flatworm Haplodiscus sp.,¹³ and Amphidinium sp.¹⁴ (strain Y-42, accession No. AB107845) separated from acoel flatworm Amphiscolops sp. was found to be the closest relative (>99% identity). The voucher specimen and the SSU rDNA gene are deposited at the Center for Advanced Marine Core Research, Kochi University.

Cultivation and Isolation. The dinoflagellate was cultured unialgally at 25 °C for 2 weeks in sterilized seawater medium enriched with 3% PES supplement, 16 h light and 8 h dark. The harvested cells (dry weight: 196 g from 540 L of culture) were extracted with MeOH-toluene (3:1, 1000 mL × 3). After addition of 1 M aqueous NaCl (1000 mL), the mixture was extracted with toluene (1000 mL × 3). A portion (8 g) of the toluene-soluble partition (24.63 g) was subjected to SiO₂ gel (CHCl₃-MeOH, 98:2) and then C₁₈ columns (MeOH-H₂O, 8:2) to give a macrolide-containing fraction (230 mg), part (50 mg) of which was separated by C₁₈ HPLC [YMC-Pack Pro C₁₈, 5 μ m, YMC Co., Ltd., 10 × 250 mm; CH₃CN-H₂O (3:1); flow rate, 3 mL/min; UV detection at 210 nm] to afford amphidinolides B6 (**2**, 0.42 mg, 0.003%, wet weight, *t*_R 23.9 min) and B7 (**1**, 0.40 mg, 0.003%, *t*_R 27 min) together with amphidinolides H (**3**, 4.3 mg, 0.03%) and H4 (**4**, 15 mg, 0.11%).

Amphidinolide B6 (2): colorless oil; $[\alpha]^{17}_{D}$ +29 (*c* 0.01, CHCl₃); IR (neat) ν_{max} 3423, 2925, 1719, and 1458 cm⁻¹; ¹H NMR (Table 2)

and ¹³C NMR (Table 1); ESIMS m/z 567 (M + H)⁺; HRESIMS m/z 589.3718 [calcd for $C_{32}H_{54}O_8Na$ (M + Na)⁺, 589.3716].

Amphidinolide B7 (1): colorless oil; $[\alpha]_D -22$ (*c* 0.01, CHCl₃); UV (EtOH) λ_{max} 209 nm (ε 6800); IR (neat) ν_{max} 3740, 2923, and 1706 cm⁻¹; ¹H NMR (Table 2) and ¹³C NMR (Table 1); EISMS *m/z* 571 (M + Na)⁺; HRESIMS *m/z* 571.3618 [calcd for C₃₂H₅₂O₇Na (M + Na)⁺, 571.3611].

Acknowledgment. We thank Y. Fukuda, Y. Endo, and Y. Nagakita for help with dinoflagellate cultivation, M. Fujimuro, Graduate School of Pharmaceutical Sciences, Hokkaido University, for providing lymphoma cells, and S. Oka, Center for Instrumental Analysis, Hokkaido University, for ESIMS measurements. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supporting Information Available: ¹³C and ¹H NMR data for compounds **1** and **2**. This information is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77-93, and references therein.
- (2) Kobayashi, J.; Shigemori, H.; Ishibashi, M.; Yamasu, T.; Hirota, H.; Sasaki, T. J. Org. Chem. 1991, 56, 5221–5224.

- (3) Kobayashi, J.; Shimbo, K.; Sato, M.; Shiro, M.; Tsuda, M. Org. Lett. 2000, 2, 2805–2807.
- (4) Ishibashi, M.; Ohizumi, Y.; Hamashima, M.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Kobayashi, J. J. Chem. Soc., Chem. Commun. 1987, 1127–1129.
- (5) Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y.; Yamasu, T.; Hirata, Y.; Sasaki, T.; Ohta, T.; Nozoe, S. J. Nat. Prod. 1989, 52, 1036–1041.
- (6) Bauer, I.; Maranda, L.; Shimizu, Y.; Peterson, R. W.; Cornell, L.; Steiner, J. R.; Clardy, J. J. Am. Chem. Soc. 1994, 116, 2657–2658.
- (7) Tsuda, M.; Sasaki, T.; Kobayashi, J. J. Org. Chem. 1994, 59, 3734– 3737.
- (8) Kobayashi, J.; Shimbo, K.; Sato, M.; Tsuda, M. J. Org. Chem. 2002, 67, 6585–6592.
- (9) Tsuda, M.; Kariya, Y.; Iwamoto, R.; Fukushi, E.; Kawabata, J.; Kobayashi, J. Mar. Drugs 2005, 3, 1–8.
- (10) Usui, T.; Kazami, S.; Dohmae, N.; Mashimo., Y.; Kondo, H.; Tsuda, M.; Terasaki, G.; Ohashi, K.; Kobayashi, J.; Osada, H. *Chem. Biol.* 2004, *11*, 1269–1277.
- (11) Horiguchi, T.; Yoshizawa-Ebata, J.; Nakayama, T. J. Phycol. 2000, 36, 960–971.
- (12) Maranda, L.; Shimizu, Y. J. Phycol. 1996, 32, 873-879.
- (13) Trench, R. K.; Winsor, H.; Symbiosis 1987, 3, 1-22.
- (14) Tsuda, M.; Izui, N.; Shimbo, K.; Sato, M.; Fukushi, E.; Kawabata, J.; Katsumata, K.; Horiguchi, T.; Kobayashi, J. J. Org. Chem. 2003, 68, 5339–5345.

NP0703085